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Abstract

The measured physical parameters of a superconducting cavity differ from those of the designed ideal cavity. This is due
to shape deviations caused by both loose machine tolerances during fabrication and by the tuning process for the accel-
erating mode. We present a shape determination algorithm to solve for the unknown deviations from the ideal cavity using
experimentally measured cavity data. The objective is to match the results of the deformed cavity model to experimental
data through least-squares minimization. The inversion variables are unknown shape deformation parameters that
describe perturbations of the ideal cavity. The constraint is the Maxwell eigenvalue problem. We solve the nonlinear opti-
mization problem using a line-search based reduced space Gauss–Newton method where we compute shape sensitivities
with a discrete adjoint approach. We present two shape determination examples, one from synthetic and the other from
experimental data. The results demonstrate that the proposed algorithm is very effective in determining the deformed cav-
ity shape.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The International Linear Collider (ILC) is a proposed electron–positron collider with global design efforts
of hundreds of accelerator scientists and particle physicists from North America, Europe and Asia [25]. The
ILC will answer such compelling questions as the identity of dark matter and the existence of extra dimen-
sions. The heart of the ILC is the superconducting Radio Frequency (RF) electron and positron linacs (linear
particle accelerators) which contribute to about 30% of the total cost. Each linac consists of 20,000 supercon-
ducting RF cavities. Due to high cost, the production tolerances in fabricating the cavity are loose. Thus, the
cavity needs to be tuned at different locations to obtain the correct frequency and field flatness of the accel-
erating mode. This procedure changes the shape of the cavity from the designed one. The deformation of the
cavity shape leads to changes in higher-order mode (HOM) frequencies, field distributions, and their damping
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effects, which may result in beam instabilities. Therefore, it is important to determine the true dimensions of
the real cavities for the reliable prediction of the HOM damping.

We formulate the shape determination problem as a PDE-constrained optimization problem. The con-
straint is the Maxwell eigenvalue problem. The objective is the weighted summation of the least-squares dif-
ferences of the numerically computed and experimentally measured cavity data. The inversion variables are
a set of parameters defining a perturbation from the designed cavity. The shape determination problem is
akin to the inverse eigenvalue problem (IEP) [6,9,21]. IEP reconstructs a real symmetric matrix
AðcÞ 2 Rn�n from prescribed spectral data, which consists of the complete or partial information of eigen-
values or eigenvectors. The unknown vector is c 2 Rn, where the coefficient matrix A is an affine function of
c. The main difference is that, in the shape determination problem, the dependence of the objective functions
and the mass and stiffness matrices on the unknown shape perturbation parameters is nonlinear and not
known explicitly, while, in IEP, the coefficient matrix dependence on unknown parameters is linear and
explicitly known.

To solve the resulting optimization problem we opt for a gradient-based method because of the large design
space and considerable cost of solving the Maxwell eigenvalue problem for realistic three-dimensional cavities.
The algorithm requires computations of derivatives of the objective function with respect to the unknown
shape perturbation variables. We use an adjoint based method to compute the derivatives. In adjoint based
methods, unlike direct sensitivity or finite difference methods, the total number of eigenvalue solves per gra-
dient computation is independent of the number of shape perturbation variables [14].

Existing approaches to the adjoint based methods can be classified into two categories: continuous adjoint
and discrete adjoint methods [2,5,14]. The continuous adjoint method follows a differentiate-then-discretize

approach. One obtains optimality conditions in continuous forms and then discretizes the resulting expres-
sions [2,10,17]. In the scope of shape optimization, one advantage of using continuous adjoint methods is
the potential of converting continuous volume integrals to surface integrals, and thus helping to avoid volume
mesh differentiation. However, the method still requires the differentiation of the surface representation. In
addition, the surface integrals in gradient expressions require evaluations of higher-order derivatives of the
state and adjoint field variables. Most importantly, the computed gradients are not always consistent with
the true gradients in continuous adjoint methods [5,14].

The discrete adjoint method follows a discretize-then-differentiate approach. One first discretizes the govern-
ing equations and then differentiates the results [13,20]. The gradients computed from this method are always
consistent with the discrete objective function. We use this method to compute derivatives when solving our
shape determination problem. Unlike the continuous adjoint method, it requires mesh differentiation during
gradient evaluations and computations of shape sensitivities of the stiffness and mass matrices. Since the
unknown perturbation variables are small compared with the cavity dimensions in our problem, we move
the mesh analytically according to the definition of each shape perturbation parameter so that the mesh move-
ment is differentiable. Differentiability of the objective function with respect to design parameters requires
mesh differentiability. This issue is discussed in the Appendix.

We use a line-search based reduced space Gauss–Newton (GN) algorithm to solve the nonlinear optimiza-
tion algorithm. Since the inverse problem is typically ill-posed, we use regularization methods such as Tikho-
nov regularization and truncated singular value decomposition (T-SVD) [11]. Each nonlinear iteration
requires the following operations:

1. Deform the mesh according to the current shape perturbation prediction,
2. Solve the forward problem, i.e. the Maxwell eigenvalue problem for each eigenmode involved in the least-

squares minimization function,
3. Solve the adjoint problem,
4. Evaluate the Jacobian matrices,
5. Compute the reduced gradient and the reduced Gauss–Newton Hessian,
6. Compute the search direction for the new shape prediction.

The first four operations are performed in parallel due to the large problem size. The last two operations can
be sequential since the design space is not large.
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To examine the effectiveness of the algorithm, we present two numerical examples. The first one is a syn-
thetic example. We first solve the Maxwell eigenvalue problem for a three-dimensional cavity deformed with a
set of random shape perturbation parameters, and record the eigenfrequency and field information that will be
used as synthetic data. To obtain the synthetic target data we use a relatively fine mesh. Then, we apply the
above procedure to the inverse problem of determining the shape deformation using the synthetic data. For
the inversion we use two different meshes model with different mesh sizes (both coarser than the target mesh),
and perform numerical experiments with noisy and noise-free synthetic data, and with different regularization
methods. This will provide a benchmark for the accuracy of the method. In the second example, we apply the
method to compute the real shape of a cavity using the experimental mode frequencies and field values from
the cavity data bank at DESY [8].

This article is organized as follows. Section 2 gives a basic outline of the shape determination algorithm, the
formulation and the algorithm used to solve the nonlinear system. Section 3 presents the numerical examples.
Section 4 then gives a brief summary.

2. Methods for shape determination problem

Our shape determination algorithm is based on a weighted least-squares minimization method. We formu-
late the problem as follows: let n denote the number of measured eigenvalues (k), m denote the number of
eigenmodes E for which the field measurements are available and p denote the number of electric field mea-
surements for each eigenmode. The shape determination problem is the minimization of the following least-
squares objective function J , which is composed of two parts, the first J k being the eigenvalue misfit, and the
second J E the electric field misfit:
J ¼ J k þ J E ¼
1

2
a
Xn

i¼1

ki � �ki

� �2 þ 1

2
b
Xm

i¼1

Xp

j¼1

EiðrjÞ � nz � Ei
j

� �2

; ð1Þ
where ki is the modeled eigenvalue of the ith mode, �ki is the corresponding measured eigenvalue, a and b are
weighting constants, EiðrjÞ 2 R3 and Ei

j 2 R are modeled and measured electric field values of the ith eigen-
mode at location rj, and, nz is the unit normal along the cavity axis. The choice of weighting constants a
and b depends on relative values of eigenvalue and eigenmode sensitivities, and in addition to the accuracy
of real-life measurements. (For instance the first 9 monopole mode measurements have relatively higher
accuracy.)

Let d 2 Rnd be the vector of nd variables representing the unknown shape deviations of the ideal cavity. The
electric field Ei and the eigenvalue ki present in (1) satisfy in the domain X(d), electric boundary CE(d) and
magnetic boundary CM(d) (Fig. 1)
$� 1

�
$� Ei

� �
� kilEi ¼ 0 in XðdÞ; ð2Þ

$ � Ei ¼ 0 in XðdÞ; ð3Þ
n� Ei ¼ 0 on CEðdÞ; ð4Þ

n� 1

�
$� Ei

� �
¼ 0 on CMðdÞ; ð5Þ

1

2

Z
Xd

lEi � Ei �
1

2
¼ 0; ð6Þ
Fig. 1. 3D Geometry of 9 cell ILC coupler. All the outer boundaries are set to CE.
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where � is the permittivity and l the permeability. The ith eigenvalue is given by ki ¼ ð2pf
c Þ

2, where c is the
speed of light and f the eigenfrequency. For the remainder of the paper, we suppress the eigenvector and eigen-
value indices for ease of presentation unless where they are really needed.

There have been extensive studies on how to numerically solve the harmonic Maxwell’s Eqs. (2)–(6). The
use of Nedelec elements guarantees that solutions of the discretized problem from (2)–(6) with nonzero k are
divergence-free and physical [15,18]. We use the Nedelec finite element method, and discretize the electric field
as E ¼

Pne
i¼1eiNi where Ni are vector shape functions, ei are the corresponding field intensities, and ne is the

number of degrees of freedom. The finite element discretization of the PDE-constrained optimization problem
then yields
minimize
d

J ¼ 1

2
aDkTDkþ 1

2
b
Xm

i¼1

ðDEiÞTDEi

subject to Ke� kMe ¼ 0;

1

2
eTMe ¼ 1

2
;

ð7Þ
where e 2 Rne is the discrete electric field vector, the misfit vectors Dk 2 Rn and DEi 2 Rp (i refers to the mode
number) have elements
ðDkÞj ¼ kj � �kj; ð8Þ

ðDEiÞj ¼
Xne

k¼1

ðeiÞkNkðrjÞ � nz � Ei
j; ð9Þ
and the stiffness matrix K 2 Rne�ne and mass matrix M 2 Rne�ne have elements
ðKÞij ¼
Z

X

1

�
$�Ni � $�Nj dX; ð10Þ

ðMÞij ¼
Z

X
lNi �Nj dX: ð11Þ
2.1. Optimality conditions

In order to derive the optimality conditions, we introduce the adjoint variables t 2 Rne and n 2 R. We then
form a Lagrangian functional and enforce the constraint through the inner product of these variables. The
adjoint vector t is also discretized with the Nedelec finite elements. The resulted Lagrangian functional L is:
Lðe; k; t; n; dÞ ¼ J þ tTðKðdÞe� kMðdÞeÞ þ 1

2
nðeTMðdÞe� 1Þ: ð12Þ
The optimality conditions, or KKT conditions, require that at the optimum the Lagrangian has to be station-
ary with respect to its variables. We next derive the optimality conditions for (12).

2.1.1. State equation

The variation of Lagrangian functional with respect to the adjoint variables t and n gives the state equation
for e and k, which is the descretized form of the PDE-constraint (2)–(6).
Ke� kMe ¼ 0; ð13Þ
eTMe ¼ 1: ð14Þ
In our simulations, we used a set of higher-order Nedelec type elements [15,18] to discretize (2)–(6). Note that
matrix K and M are symmetric while M is also positive definite. In the large-scale accelerator cavity system
simulations, these matrices can have sizes corresponding to hundreds of million degrees of freedom. A
shift-and-invert Lanczos method has been implemented to solve (13) and (14) on parallel computers [16,23].
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2.1.2. Adjoint equation

In order to obtain the adjoint equations we take the variation of (12) with respect to the state variables e

and k:
Kt� kMtþ nMe ¼ � oJ

oe
; ð15Þ

tTMe ¼ oJ

ok
: ð16Þ
There are as many adjoint equations, and adjoint pairs (t,n) as the number of eigenpairs (e,k) involved in the
objective function (1). Given state variables (e,k) and the inversion variable d, we compute the corresponding
adjoint pair as follows. First we multiply Eq. (15) with eT, yielding
n ¼ �eT oJ

oe
: ð17Þ
Next, given n, we solve for t
ðK� kMÞt ¼ �nMe� oJ

oe
: ð18Þ
Note that {e} is the null space of K � kM. We use a sparse direct solver MUMPS [3,4] to calculate the solution
of (18) and add a constant multiple of e to the solution such that the normalization condition (16) is satisfied.

2.1.3. Inversion equation

By taking the variation of Lagrangian with respect to inversion variable di we arrive at the expression for
the ith component of the inversion equation:
oL

odi
¼ oJ

odi
þ tT oK

odi
e� k

oM

odi
e

� �
þ 1

2
neT oM

odi
e; ð19Þ
where oK
odi

and oM
odi

are stiffness and mass matrix sensitivities. Since the amount of perturbations are very small
with respect to the size of the cavity, we use analytical expressions for the mesh movement (see the Appendix).
As a result, the mesh movement is continuous with respect to each design variable. In the case of large shape
deformations, different alternatives are possible [12].

2.2. Optimization algorithm

To find the optimum shape, we need to solve three nonlinear equations (state, adjoint and inversion equa-
tions) for three sets of unknowns (e,k), (t,n) and d. One approach is to solve nonlinear equations simulta-
neously. This is referred as the full space method [1]. An alternative is the reduced space method, where
the state and adjoint unknowns are eliminated by solving the state and adjoint equations and the remaining
nonlinear inversion equation is solved iteratively for the design variable. This work uses a reduced space
method due to relatively small design space.

The reduced gradient can be computed as follows: given a set of shape perturbation estimate dk at iteration
k, we first solve the state equations (13) and (14) for the modes involved in the objective function (1). Then,
using computed state variables (e, k), we solve the adjoint equations (15) and (16) for the adjoint pairs (t,n).
Finally, using the state and adjoint variables, we compute the reduced gradient via (19).

Once the reduced gradient is computed, the inversion equation can be solved iteratively using the steepest
descent or quasi-Newton methods. These methods only require gradient information. A better approach is to
use the Gauss–Newton method which utilizes the least-squares structure of the problem. The Gauss–Newton
method requires the so-called Jacobian matrices [19]. We define eJ ðdÞ ¼ J ðEðdÞ; kðdÞ; dÞ, where the depen-
dence of E and k on d is implicit through the state equation. Then, the reduced gradient can be written in terms
of the Jacobian matrices
gd :¼ $d
eJ ðdÞ ¼ $d

eJ k þ $d
eJ E ¼ aJT

k Dkþ b
Xm

j¼1

ðJj
EÞ

TDEj; ð20Þ
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where Jacobians Jk 2 Rn�nd and JE 2 Rp�nd are defined as:
ðJkÞij ¼
okiðdÞ
odj

; ð21Þ

ðJp
EÞij ¼

oDEp
i ðdÞ

odj
: ð22Þ
For the shape determination problem, the size of the inversion space is relatively small. For an ILC cavity
shape, a typical number of inversion parameters is less than one hundred, (unlike state and adjoint variables,
which are in the order of millions). Consequently, it is feasible to compute and store the Jacobians.

The reduced Gauss–Newton (GN) Hessian WGN 2 Rnd�nd is:
WGN :¼ aJT
k Jk þ b

Xm

j¼1

ðJj
EÞ

T
J

j
E: ð23Þ
As misfits Dk and DEj approach zero, the GN Hessian approaches to the true Hessian.
In order to solve the nonlinear equation we employ the Gauss–Newton method with an Armijo-based line

search strategy. Because of the positive-definiteness of the GN Hessian, this method is known to be globally
convergent. Furthermore, the number of nonlinear iterations for the Gauss–Newton method to converge is
small and independent of the number of design parameters [19].

2.2.1. Computing the Jacobians

The elements of Jk and JE can be computed using (19). In (19) the function J is equivalent to ki for Jk, and
to DEj for Jj

E terms. The state variables e and k are the corresponding electric field, and eigenvalues of the
related mode. The adjoint variables are computed via Eqs. (15 and 16) with the corresponding source terms.

For Jk, each term can be computed as:
ðJkÞij ¼ tT
i

oK

odj
ei � ki

oM

odj
ei

� �
þ 1

2
nie

T
i

oM

odj
ei; ð24Þ
where adjoint pairs (t,n) are the solution of
K� kM Me

ðMeÞT 0

� 	
t

n

� �
¼

0

1

� �
: ð25Þ
For eigenvalue sensitivity calculations, an inspection of Eq. (25) reveals that the adjoint vector t is simply
eigenvector e, and adjoint value n = 0. Hence, Jk requires no extra computation for adjoint variables, and de-
mands the evaluation of (24) only for each Jk term.

Similarly for a term of Jl
E, the expression is:
ðJl
EÞij ¼

Xne

r¼1

ðelÞr
oNrðriÞ

odj
� nz þ tT

i

oK

odj
el � kl

oM

odj
el

� �
þ 1

2
nie

T
l

oM

odj
el; ð26Þ
where the adjoint eigenpairs t, n are solution of
K� kM Me

ðMeÞT 0

� 	
t

n

� �
¼

h

0

� �
; ð27Þ
where the source term hj ¼ �
Pne

k¼1djkNkðriÞ � nz. To compute JE, we solve Eq. (27) for p · m times, and eval-
uate (26) for each JE term.

2.3. Regularization methods

The unknown deformed cavity shape has an infinite number of degrees of freedom. On the other hand,
the measured cavity information is finite, and only a limited number of eigenfrequencies and field values are
available. Due to this lack of information, the shape determination problem is typically ill-posed. To remedy
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ill-posedness and rank deficiency the PDE-constrained problem has to be regularized. The choice of regu-
larization technique and regularization parameters are crucial in the success of the inversion algorithm.
The selection depends on several factors such as the uncertainties in the measurements and in the inversion
parameters, and amount of available spectral data [24]. Two different regularization methods, Tikhonov reg-
ularization and Truncated singular value decomposition (T-SVD) are used in this work.

2.3.1. Tikhonov regularization

In Tikhonov regularization one adds an extra function to the objective function. The standard Tikhonov
regularization function has the following form:
RðdÞ ¼
Xnd

i¼1

cid
2
i ;
where ci are the regularization constant and in general can attain different values for each inversion parameter.

2.3.2. T-SVD regularization

One method of overcoming rank deficiency and ill-posedness is to use truncated singular value decompo-
sition (T-SVD) with the GN method [11].

The singular value decomposition (SVD) of the reduced Hessian is equivalent to eigenvalue decomposition
and is of the form
WGN ¼
Xnd

i¼1

1

2
riv

T
i vi; ð28Þ
where ri are singular values and vi singular vectors. In the case where the WGN is ill-posed and rank-deficient,
T-SVD just simply ignores the SVD components associated with singular values less than some threshold va-
lue. The search direction of the GN method then becomes
pk ¼ �
X
j¼1

vT
j gd

rj
vj; ð29Þ
where j includes the set of singular values satisfying rj > j. The choice of j plays the role of the regularization
parameter.

2.3.3. Outline of the algorithm

We have described the components of the nonlinear algorithm. The outline of the shape determination
algorithm is then

� Select the set of inversion variables for the deformed cavity [27]. Choose the ideal cavity as the initial guess
(this is equivalent to setting d = 0).
� Create a CAD model of the ideal cavity, and create a tetrahedral mesh using the mesh generation tool

CUBIT [7].
� While not converged at iteration k:

1. Solve the Maxwell eigenvalue problem for the modes involved in the objective function for state vari-
ables (e,k).

2. Solve the adjoint problems for the adjoint pairs (t,n).
3. Compute the Jacobian matrices.
4. Compute the reduced gradient and reduced GN Hessian.
5. Compute the search direction pk 2 Rnd by solving WGNpk = �gd.
6. Update the current shape iterate with dk+1 = dk + apk. Move the mesh for the new design variable dk+1.

Here, a 2 R is the step length determined by Armijo-based backtracking algorithm.

Convergence criteria will be discussed in the next section.



Fig. 2. 3D mesh of ILC TDR 9 cells cavity used in the synthetic example.
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3. Numerical examples

In this section we present two numerical examples. Both examples use realistic 3D cavities. The first exam-
ple uses synthetically obtained data, while the second one real cavity data as input to recover the deformed
cavity shape.

3.1. Shape determination with synthetic data

The effectiveness of the prescribed method to predict deformed cavity shape is first assessed with a synthetic
example. We choose a three-dimensional ILC TDR 9 cells cavity without couplers. First, we create a CAD
model and several tetrahedral meshes for the ideal cavity with different mesh sizes. In this work, we use second
order Nedelec finite element for the discretization (Fig. 2).

The next step is to deform the cavity using a random deformation set. We choose the following perturba-
tions as independent shape parameters: for each cell the change in the ideal cell radius (dr), the change in the
ideal cell length in longitudinal direction (dz), and four parameters representing cell tuning procedure (dt1,
dt2, dt3, dt4), for each iris the change in the ideal iris thickness (da). In total, the deformation set has 62 inde-
pendent perturbation parameters (for each of the 9 cells dr, dz, dt1, dt2, dt3 and dt4, and for each of 8 irises
da). We assign a random value for each of these variables (Table 1), deform the ideal cavity along them, and
move the mesh accordingly. We refer to this artificially deformed cavity as the target cavity. Next step is solv-
ing the Maxwell eigenvalue problem for the target cavity using a fine mesh1 with 6 million degrees of freedom,
and compute the first 45 modes with nonzero eigenvalues (the first 9 are the monopole modes, and the remain-
ing 36 are the HOM modes). We also record 9 field values at the center of each cell per mode for the first 9
monopole modes. In other words, in Eq. (1) we use 45 modes for J f and 9 modes with 9 field values for J E.
The weighting constants a is set to 1, and b to 10.

We use the recorded data of the target cavity to recover the unknown shape perturbations. The ideal cavity
shape is used as the initial guess. The inversion variable set is the same set used for the random deformation.
We refer to the resulted shape as inverted cavity. The reduced GN Hessian of the synthetic problem with this
set of parameters is ill-posed. The spectra of GN Hessian for different mesh discretization are shown in Fig. 3.
It is evident from the spectra that any eigenvalue information of GN Hessian with values less than 1e6 is in the
noise level. To remedy ill-posedness, we use either Tikhonov regularization with regularization constant
c = 1e6, or T-SVD method with cut-off frequency j = 1e6. We solve the inverse problem using two different
mesh discretizations, with 2.48e6 (dense mesh) and 0.85e6 (coarse mesh) degrees of freedom models. We per-
form five different inversion tests, using different mesh models, noise-free and noisy data, and different regu-
larization techniques:

Case 1: Using dense mesh, with noise-free data, and Tikhonov regularization.
Case 2: Using dense mesh, with noisy data, and Tikhonov regularization.
Case 3: Using dense mesh, with noisy data, and T-SVD regularization.
Case 4: Using coarse mesh, with noisy data, and Tikhonov regularization.
Case 5: Using coarse mesh, with noisy data, and T-SVD regularization.
1 Our numerical experiments indicate that eigenfrequencies obtained using this mesh is accurate to 1 KHz level, and normalized field
values are accurate to the fourth digit.



Table 1
Inverted and target cavity shape dimensions

Parameter Target Case 1D + F + TR Case 2D + N + TR Case 3D + N + TS Case 4C + N + TR Case 5C + N + TS

Cell 1 dr 300 207 217 38 41 36
Cell 1 dz �300 �237 �242 �145 �239 �113
Cell 1 dt1 100 �15 �15 74 �41 48
Cell 1 dt2 300 47 57 135 60 159
Cell 1 dt3 100 28 29 �2 55 65
Cell 1 dt4 �200 �174 �163 �244 �187 �321

Cell 2 dr 300 155 158 271 106 300
Cell 2 dz �300 �301 �310 �345 �307 �404
Cell 2 dt1 100 142 149 250 136 271
Cell 2 dt2 300 59 46 98 48 114
Cell 2 dt3 100 60 71 218 113 343
Cell 2 dt4 �200 �109 �113 �222 �121 �205

Cell 3 dr 300 109 119 342 88 100
Cell 3 dz �300 �294 �284 �305 �279 �267
Cell 3 dt1 100 102 95 115 84 24
Cell 3 dt2 300 70 75 77 77 57
Cell 3 dt3 100 70 56 84 87 12
Cell 3 dt4 �200 �122 �123 �221 �132 �136

Cell 4 dr 300 131 140 225 111 115
Cell 4 dz �300 �290 �296 �243 �294 �246
Cell 4 dt1 100 92 92 110 82 87
Cell 4 dt2 300 78 71 131 70 33
Cell 4 dt3 100 72 79 63 110 112
Cell 4 dt4 �200 �137 �143 �230 �144 �246

Cell 5 dr 300 102 103 201 87 208
Cell 5 dz �300 �285 �286 �291 �287 �316
Cell 5 dt1 100 86 79 120 70 177
Cell 5 dt2 300 87 85 129 80 181
Cell 5 dt3 100 85 80 114 101 261
Cell 5 dt4 �200 �142 �144 �204 �143 �231

Cell 6 dr 300 140 119 343 82 199
Cell 6 dz �300 �277 �271 �318 �276 �293
Cell 6 dt1 100 81 85 106 78 22
Cell 6 dt2 300 98 106 65 99 65
Cell 6 dt3 100 77 76 108 108 47
Cell 6 dt4 �200 �158 �145 �235 �146 �153

Cell 7 dr 300 144 171 311 162 159
Cell 7 dz �300 �272 �276 �254 �285 �266
Cell 7 dt1 100 75 73 115 65 70
Cell 7 dt2 300 112 98 131 86 4
Cell 7 dt3 100 84 81 130 114 139
Cell 7 dt4 �200 �168 �172 �301 �167 �268

Cell 8 dr 300 159 159 311 152 296
Cell 8 dz �300 �264 �255 �271 �266 �248
Cell 8 dt1 100 66 71 151 63 211
Cell 8 dt2 300 147 154 304 140 367
Cell 8 dt3 100 98 89 151 116 281
Cell 8 dt4 �200 �185 �188 �231 �177 �281

Cell 9 dr 300 16 �12 114 54 139
Cell 9 dz �300 �263 �261 �395 �276 �429
Cell 9 dt1 100 45 45 15 36 2
Cell 9 dt2 300 �39 �41 �91 �53 �136
Cell 9 dt3 100 �63 �56 �16 �75 �46
Cell 9 dt4 �200 �40 �41 3 �13 81
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Fig. 3. Eigenvalue spectra of reduced Hessian obtained using meshes with different densities.

Table 1 (continued)

Parameter Target Case 1D + F + TR Case 2D + N + TR Case 3D + N + TS Case 4C + N + TR Case 5C + N + TS

Iris 1 da 100 112 120 111 100 65
Iris 2 da 100 118 113 90 94 86
Iris 3 da 100 121 124 121 104 124
Iris 4 da 100 124 116 120 95 86
Iris 5 da 100 127 129 125 106 115
Iris 6 da 100 130 135 119 113 126
Iris 7 da 100 131 132 106 110 80
Iris 8 da 100 132 128 110 106 74

All parameters are in lm. D: dense mesh, C: coarse mesh, F: noise-free data, N: noisy data, TR: Tikhonov regularization, TS: T-SVD
regularization.
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In this work, noise refers to the accuracy of the eigenvector and eigenvalue measurement. We assume that
the synthetic frequencies are accurate to 1e3 Hz level for the monopole modes, and to 1e4 Hz level for the
HOM modes. For the field data, the normalized electric field values are assumed to be accurate to the third
digit. For example, a target HOM frequency of 1,623,189,138 Hz is converted to 1,623,190,000 Hz for the
noisy data. The assumptions on the noise level are in agreement with the accuracy of the measurements [8].

The nonlinear algorithm terminates when one of the following criteria is achieved: (i) the relative norm of
the reduced gradient is decreased by a factor of 1e5, or (ii) the norm of the reduced GN Newton search direc-
tion is less than 1 lm. In all five cases the nonlinear algorithm converges in 4 nonlinear iterations. Inverted and
target cavity shape parameters are listed in Table 1. Fig. 4 shows the misfit in eigenfrequencies with the target
data for the ideal and deformed cavity, and Fig. 5 shows the misfit in normalized electric field values for 9
monopole modes both for the ideal and deformed cavities.

From five different inversion cases, we have the following conclusions:

� The misfit both in eigenfrequencies and electric field values decreases to the noise level for all five cases.
Noisy data doesn’t influence the inversion results.
� The inverted shape parameters are in good agreement with the target parameters for dz and da values. The

situation for the other parameters is more complicated. Results indicate that for the end cells dr, dt1, dt2,
dt3 and dt4 are strongly correlated. Their correlation is relatively weaker for the inner cells.
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Fig. 4. Error in frequency values for the initial and inverted cavities for the first 45 frequencies. Left: using dense mesh, right: using coarse
mesh.
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Fig. 5. Error in normalized field values for the initial and inverted cavities for the first 9 monopole modes. Left: using dense mesh, right:
using coarse mesh. Case numbers are as in Fig. 4.
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� We have ample numerical evidences that inversion results correspond to global minima (once regularization
method is chosen the optimizer converges to a unique minimum starting from different initial guesses).
� The variation in the inversion results shows the importance of regularization methods.
� The dense mesh performs better than the coarse mesh. The results suggest that the discrete model should be

accurate to the noise level.
� For the synthetic problem T-SVD regularization performs better in estimating inversion variables. The best

inversion results are obtained in Case 3.

3.2. Shape determination with real data

DESY [8] provides experimental results for manufactured ILC baseline cavities. In particular, the
DESY cavity database includes measurements of 9 monopole mode frequencies, HOM frequencies, and
the field value measured at the center of each cell for the monopole modes. We use the available
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experimental data for one of the manufactured and tuned 9 cells cavities to infer for the deviations of the
ideal cavity shape.

The ideal cavity shape includes couplers at the end-groups, and is discretized with quadratic tetrahedral
elements, resulting in 3.6 million degrees of freedom (Fig. 6). As expected, due to shape deviations, the mode
frequencies of the ideal cavity do not agree with those of the real cavity. We use the shape determination algo-
rithm presented in the previous section to determine the unknown cavity deviations with the following set as
shape variables:

� For each cell, the change in the cell radius.
� For each cell, two parameters defining cell warping perpendicular to the cavity axis.
� For each cell, four parameters representing the tuning procedure.
� For each cell, the change in the cell thickness.
� For each iris, the change in the iris thickness.

In total, there are 80 unknown parameters defining the shape deviation. The selection of this set includes all
the potential degrees of freedom that both has sensitivity the objective function, and known to have uncertain-
ties in the manufacturing process. In general, we choose the set of unknown shape parameters such that the
resulted inversion variable is a good approximation of the potential shape deformation [8,27]. We use the fol-
lowing measurement data in this example: The J f includes the 9 monopole frequencies and 36 HOM frequen-
cies, and J E the field values for the 9 monopole modes. The weighting constant a is 10 for the monopole
modes, and 1 for the HOM modes, and b is 10 for the field value misfit.

The optimization problem with the given design parameters and available data is ill-posed and rank defi-
cient. Fig. 7 shows the eigenvalue spectrum of the GN Hessian. As regularization method we use T-SVD
regularization and set the regularization parameter j ¼ rmax

105 .
Fig. 6. ILC TDR 9 cells cavity with couplers.
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Fig. 7. Eigenvalue spectrum of the GN Hessian for real data inversion.
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We use the ideal cavity as the initial guess, and assume convergence when the decrease in objective function
is less than a certain tolerance. The algorithm converges in 7 nonlinear iterations (Fig. 8).

As expected, the resulted inverted cavity shape is only a small perturbation of the real cavity. The typ-
ical size of an inverted parameter is at the order of 100 lm. These are relatively small values compared to
the size of the ideal cavity (the diameter of each cell is 10.33 cm, and the length of the cavity is about
1 m).

Fig. 9 shows the frequency differences with respect to the measured data, for both the ideal and the
deformed cavities. Since the measurements of the monopole frequencies have higher fidelity, we use a larger
weight a for the monopole frequency misfit. As a result, the inverted cavity data have better agreement with
the real cavity for the monopole modes than for the HOM modes.

In addition to the frequency data, monopole mode fields for the first 9 modes are also used for the opti-
mization. Fig. 10 shows the differences of the field values with respect to measured data. With respect to
the monopole mode field distributions, the inverted cavity has very good agreement with the measured
data.
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Fig. 8. Change in the objective function with nonlinear iterations.
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4. Summary

We have presented a Maxwell eigenvalue shape determination algorithm for solving unknown perturba-
tions of cavities through least-squares minimization. We used a reduced space Gauss–Newton method, derived
the nonlinear optimality system, and outlined the components of the optimization algorithm.

We presented two test examples to examine the effectiveness of the algorithm. The first is a synthetic exam-
ple, where the deformed cavity shape and the inversion parameter set are known. We performed the inversion
example using two different meshes, where the target data is obtained using a much finer mesh. Since this is a
synthetic problem, it is possible to check the quality of the result. The synthetic example demonstrates that the
algorithm successfully inverts for the deformed cavity. However, due to ill-posedness and rank deficiency,
quality of the inversion results depends on several factors, the most important of which is the choice of the
regularization method.

The second example uses real data and the exact solution is not known. As regularization method the GN
method with T-SVD was used for solving the problem. The algorithm yields a deformed cavity with frequency
and field values very close to those of the recorded real cavity.

Further studies on the effect of the null space of the inversion variable, error analysis of the input data and
of the ill-posedness of the shape determination problem will be pursued in the future.
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Appendix

Here, we present formulations for the shape derivatives of the objective function. The Lagrangian of the
discrete PDE constrained optimization problem is
Lðe; t; k; n; dÞ ¼ J ðdÞ þ tTðKðdÞe� kMðdÞeÞ þ 1

2
neTMðdÞe: ð30Þ



1736 V. Akçelik et al. / Journal of Computational Physics 227 (2008) 1722–1738
The first order optimality conditions require that the variation of Lagrangian must be zero with respect to
the state, adjoint and inversion variables. The variation of the Lagrangian with respect to the state and adjoint
variables leads to the state (2)–(6) and adjoint Eqs. (15) and (16). The variation with respect to the inversion
variable dr yields the inversion equation
oL

odr
¼ oJ

odr
þ tT oK

odr
e� k

oM

odr
e

� �
þ 1

2
neT oM

odr
e: ð31Þ
Differentiability of the reduced gradient requires differentiability of the objective function J , and mass and
stiffness matrices with respect to the shape parameters.

It is advantageous to work in curvilinear coordinate system. The transformation from the physical coordi-
nate x to the curvilinear coordinate f is given by
x � xðf1; f2; f3Þ: ð32Þ

The vector shape function Ni for a triangular element can be computed using curvilinear coordinates [22,26],
Ni ¼
X3

k¼1

N ikðf1; f2; f3Þ$fk; ð33Þ
where Nik(f1,f2,f3) are polynomial functions [26]. The term $fk is defined as
$fk ¼

ofk
ox
ofk
oy

ofk
oz

2664
3775: ð34Þ
The shape derivative of the objective function J (Eq. (1)) is given as
oJ

odr
¼ b

Xm

i¼1

Xp

j¼1

ðDEiÞj
Xne

k¼1

ðeiÞk
oNkðrjÞ

odr
� nz

 !" #
; ð35Þ
where
oNkðriÞ
odr

¼
X3

l¼1

N klðf1; f2; f3Þ
o$flðriÞ

odr
; ð36Þ
here the important term is the derivative of $fl with respect to the design variable dr. Its computation will be
explained below.

To compute the shape sensitivity of the stiffness matrix, first we define the curl of vector shape functions.
Taking the curl of (33) yields
$�Ni ¼
X3

k¼1

Cikðf1; f2; f3Þsk; ð37Þ
where
s1 ¼ $f2 � $f3; ð38Þ

Ci1 ¼
oN i3

of2

� oNi2

of3

; ð39Þ
and similarly by permutation of indices one can compute s2, Ci2, s3, Ci3.
Substituting vector shape function Ni, and its curl $�Ni into (10) and (11) gives
Kij ¼
Z

X̂

1

�

X3

k¼1

Cikðf1; f2; f3Þsk

 !
�
X3

l¼1

Cjlðf1; f2; f3Þsl

 !
J dX̂; ð40Þ

Mij ¼
Z

X̂
l
X3

k¼1

N ikðf1; f2; f3Þ$fk

 !
�
X3

l¼1

Njlðf1; f2; f3Þ$fl

 !
J dX̂; ð41Þ
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where J is the determinant of Jacobian J
J ¼ ox

of

� �T

: ð42Þ
Since non-dimensional curvilinear coordinates are independent of the actual geometry of the element, the fol-
lowing identities are zero
oNik

odr
¼ 0; ð43Þ

oCik

odr
¼ 0: ð44Þ
The expression for stiffness and mass matrix sensitivities are then
oKij

odr
¼
Z

X̂

1

�

X3

k¼1

Cik
osk

odr

 !
�
X3

l¼1

Cjlsl

 !
J dX̂þ

Z
X̂

1

�

X3

k¼1

Ciksk

 !
�
X3

l¼1

Cjl
osl

odr

 !
J dX̂

þ
Z

X̂

1

�

X3

k¼1

Ciksk

 !
�
X3

l¼1

Cjlsl

 !
oJ
odr

dX̂; ð45Þ

oMij

odr
¼
Z

X̂
l
X3

k¼1

Nik
o$fk

odr

 !
�
X3

l¼1

N jl$fl

 !
J dX̂þ

Z
X̂

l
X3

k¼1

Nik$fk

 !
�
X3

l¼1

Njl
o$fl

odr

 !
J dX̂

þ
Z

X̂
l
X3

k¼1

Nik$fk

 !
�
X3

l¼1

Njl$fl

 !
oJ
odr

dX̂: ð46Þ
The term os1

odr
can be computed as
os1

odr
¼ o$f2

odr
� $f3 þ $f2 �

o$f3

odr
: ð47Þ
The transformation between physical coordinate x and normalized coordinate f for a discrete domain can be
written in terms of nodal coordinates of the physical mesh
x ¼
Xnm

i¼1

/iðfÞxi; ð48Þ
where xi is the coordinate at node i, /i is the scalar shape function, and nm are number of mesh points.
Using (42) and (48), the derivative of the J with respect to the design variable dr is given by
oJ

odr
¼
Xnm

i¼1

oxi

odr
$f/i

� �T
; ð49Þ
where $f is the gradient vector in the curvilinear coordinate system. The derivative of the determinant of J is
then
oJ
odr
¼ J

Xnm

i¼1

oxi

odr
� $f/i

� �
: ð50Þ
Similarly, by differentiating the identity J�1J = I, where I is the identity matrix, we get:
oJ�1

odr
¼ �J�1 oJ

odr
J�1: ð51Þ
The term oxi
odr

is called the design velocity. It reflects how the location of each grid node changes as the design
variable changes. Differentiability of the objective function requires mesh differentiability, i.e. the change in
nodal coordinate with respect to design variable must be continuous. For the shape determination problem,
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each nodes physical position can be written as functions of shape parameters, i.e. xi(dr) in (49) and (50) is
known explicitly.

We described a framework for computing the shape sensitivities for the discrete formulation. An alternative
to compute the shape sensitivities of the Jacobian terms is to use finite difference method. For instance, the
term o

odr
ðoxi
ofj
Þ can also be computed using the forward difference scheme:
o

odr

oxi

ofj

� �
¼ 1

a
oxi

ofj
ðdr þ aÞ � oxi

ofj
ðdrÞ

� �
; ð52Þ
where a is a small perturbation in the shape parameter dr. The result obtained by finite difference method is
‘‘exact’’ since the dependence of the Jacobian terms to the shape parameters is linear.
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